Combustion physics

From PrecisionCodeWorks
Revision as of 21:51, 18 September 2014 by Pete (talk | contribs) (Created page with "Combustion or burning is a high-temperature exothermic chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous produ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Combustion or burning is a high-temperature exothermic chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed smoke. Combustion in a fire produces a flame, and the heat produced can make combustion self-sustaining. Combustion is often a complicated sequence of elementary radical reactions. Solid fuels, such as wood, first undergo endothermic pyrolysis to produce gaseous fuels whose combustion then supplies the heat to required to produce them. Combustion is often hot enough that light in the form of either glowing or a flame is produced. A simple example can be seen in the combustion of hydrogen and oxygen into water vapor, a reaction commonly used to fuel rocket engines. This reaction releases −242 kJ/mol of enthalpy (heat):

2H2(g) + O2(g) → 2H2O(g)


Uncatalyzed combustion in air requires fairly high temperatures, because quantum mechanics forbids the reaction between the rare triplet state of the familiar dioxygen and the common singlet state of fuels. Complete combustion is stoichiometric with respect to the fuel, where there is no remaining fuel, and ideally, no remaining oxidant. Thermodynamically, the chemical equilibrium of combustion in air is overwhelmingly on the side of the products. However, complete combustion is almost impossible to achieve, since the chemical equilibrium is not necessarily reached, or may contain unburnt products such as carbon monoxide, hydrogen and even carbon (soot or ash). Thus, the produced smoke is usually toxic and contains unburned or partially oxidized products. Any combustion at high temperatures in atmospheric air, which is 78 percent nitrogen, will also create small amounts of several nitrogen oxides, commonly referred to as NO x, since the combustion of nitrogen is thermodynamically favored at high, but not low temperatures. Since combustion is rarely clean, flue gas cleaning or catalytic converters may be required by law.